Nuklearmedizinische Diagnostik

Inhaltsverzeichnis

NuklearmedizinDas Ziel der nuklearmedizinischen Diagnostik ist die Darstellung von Stoffwechselprozessen und somit der Funktion von Organen. Man spricht deshalb auch von funktioneller Bildgebung, die die morphologische Bildgebung der konventionellen Röntgendiagnostik ergänzt. Das Prinzip ist dabei relativ simpel: Der Patient erhält eine radioaktiv markierte Substanz (je nach Anwendung per Injektion, Ingestion oder Inhalation), deren Verlauf im Körper mithilfe eines Detektors dargestellt wird. Der zeitliche Verlauf der Anreicherung („Uptake“) gibt dabei Aufschlüsse über die Stoffwechselaktivität beziehungsweise die Funktion der untersuchten Region.

In den folgenden beiden Abbildungen sind die Prinzipien der konventionellen Projektionsradiographie (li.) und der nuklearmedizinischen Bildgebung mithilfe einer Gammakamera (re.) vereinfacht dargestellt:

projektionsradiographie
Skizzierung der Projektionsradiographie
szintigraphie
Skizzierung der Szintigraphie

Bei der Projektionsradiographie wird der Patient mit einer externen Strahlenquelle, der Röntgenröhre, ausgesetzt und die transmittierte Strahlung mithilfe eines Detektors gemessen. Das so generierte zweidimensionale Schwächungsprofil des Patienten lässt direkte Rückschlüsse auf die Morphologie des Patienten zu. Wird das System nun um den Patienten rotiert, gleicht es dem Prinzip der Computertomographie, sodass eine 3D-Rekonstruktion des Patienten ermöglicht wird.

In der nuklearmedizinischen Diagnostik ist der Patient selbst die Strahlenquelle. Mithilfe einer Gammakamera, in der Regel ein NaI-Detektor, wird die vom Patienten ausgehende Strahlung gemessen. Das Resultat ist eine zweidimensionale Aktivitätsverteilung des Patienten. Diese zweidimensionale Bildgebung wird Szintigraphie und das entstehende Bild Szintigramm genannt. In dem oben dargestellten Beispiel könnte man so den zeitlichen Verlauf der Nierenanreicherung darstellen und würde Informationen über die Nierenfunktion erhalten. Morphologische Veränderungen, wie beispielsweise Verkalkungen, könnte man nicht direkt nachweisen. Auch diese Anordnung kann um den Patienten rotiert werden, um eine dreidimensionale Rekonstruktion der Aktivitätsverteilung zu ermöglichen. Man spricht dabei von einer SPECT („Single Photon Emissions Computer Tomographie“). Neben der Szintigraphie und der SPECT gibt es noch eine dritte Bildgebungsmethode in der Nuklearmedizin: die PET („Positron Emissions Tomographie“). Die PET wird aufgrund der Komplexität des Verfahrens in einem separaten Artikel ausführlicher beschrieben.

Sowohl die SPECT als auch die PET haben aber aufgrund der fehlenden morphologischen Informationen das Problem der fehlenden Orientierung auf den entstehenden Bildern. Im Falle der Nieren oder der Lunge ist dies aufgrund der eindeutigen Lagebeziehung von sekundärer Bedeutung. Bei anderen Anwendungen, wie beispielsweise dem Tumor-Staging oder dem Auffinden von Wächterlymphknoten, ist dies jedoch unverzichtbar für eine aussagekräftige Diagnostik. Für diese Fragestellungen gibt es SPECT- bzw. PET-Systeme, die zusätzlich über ein Low-Dose CT verfügen. Somit kann während der Untersuchung eine Computertomographie durchgeführt und direkt mit den SPECT bzw. PET Daten überlagert werden. Diese multimodalen Systeme werden dann SPECT-CT bzw. PET-CT genannt.

Tracer-Prinzip

Da die nuklearmedizinische Bildgebung zuvor festgelegte Fragestellungen beantworten soll, ist es von großer Bedeutung, dass das applizierte Radionuklid von den gewünschten Zellen/Organen verstoffwechselt wird bzw. dem zur Fragestellung passenden Weg durch den Organismus folgt.

Zu diesem Zweck bedient man sich in der Nuklearmedizin dem „Tracer-Prinzip“. Dabei wird das signalemittierende Radionuklid der Wahl über eine kovalente Bindung, den Spacer, an ein biologisches Tracermolekül (Ligand) mit für die Fragestellung geeigneten pharmakogenetischen Eigenschaften gebunden. Der gewählte Tracer folgt einem bekannten Weg im Organismus und liefert das Radionuklid an das gewünschte Ziel (Zellmembran, Antigen, Enzym, Rezeptor, Transportsystem, RNA usw.). Die Verbindung aus Radionuklid, Spacer und Tracer wird Radiopharmakon genannt.

tracer-prinzp

Nuklideigenschaften

Für die Bildgebung wird Photonenstrahlung benötigt, die außerhalb des Körpers mithilfe von Detektoren messbar ist. Bei der Szintigraphie und SPECT werden deshalb Gammastrahler eingesetzt. Bei der PET werden β+-Strahler verwendet, bei denen die detektierbare Photonenstrahlung durch die Vernichtungsstrahlung durch die Wechselwirkung zwischen den emittierten Positronen und den im Körper vorhandenen Elektronen gegeben ist.

Die Photonenenergie muss groß genug sein, um möglichst wechselwirkungsfrei den menschlichen Körper zu verlassen. Optimal sind Emissionsenergien von > 100 keV, da die Auftrittswahrscheinlichkeit des Photoeffekts bzw. der Vernichtung der Photonen bei höheren Energien abnimmt. Gleichzeitig muss die Photonenenergie aber klein genug sein, um sie mit praktikablen Messmitteln noch detektieren zu können. Höhere Energien bedingen auch immer größere Detektoren und stärkere Kollimatoren. Bei der Szintigraphie und der SPECT besitzt das am häufigsten verwendete Nuklid, Tc-99m, eine Emissionsenergie von 140 keV. Bei der PET ist die Emissionsenergie durch den Ursprung der Strahlung mit 511 keV festgelegt (Ruheenergie eines Elektrons bzw. Positrons).

Die Halbwertszeit des verwendeten Nuklids sollte aus Gründen der Praktikabilität und des Strahlenschutzes in der Größenordnung der Untersuchungsdauer liegen. Ist die Halbwertszeit zu kurz (bspw. wenige Sekunden) geht bereits in der Zeit zwischen Herstellung des Radiopharmakons und Bildgebung zu viel Aktivität verloren. Ist die Halbwertszeit zu lang (Monate oder Jahre) führt dies zu einer erhöhten Strahlenbelastung für Patient und Bevölkerung. Zudem wäre die Entsorgung von Abfällen und die Beseitigung von Kontaminationen so unmöglich. Das bei der Szintigraphie und SPECT häufig verwendete Tc-99m hat eine Halbwertszeit von 6 Stunden. Wird das Nuklid in einem hauseigenen Zyklotron hergestellt, wie bei einigen PET-Nukliden üblich, sind auch Halbwertszeiten im zweistelligen Minutenbereich praktikabel.

Anwendungen

Im Folgenden erhaltet ihr eine kompakte Übersicht über einige diagnostische Anwendungen in der Nuklearmedizin. Die Auflistung ist selbstverständlich nicht abschließend und wird laufend ergänzt. Nähere Informationen zu den einzelnen Anwendungen erhaltet ihr, wenn vorhanden, in den entsprechenden Artikeln.

Lungenszintigraphie

Die Lungenszintigraphie ist ein Verfahren zur Darstellung der Lungenfunktion. Dabei kann entweder die Ventilation oder die Perfusion, also die Durchblutung, der Lungen untersucht werden.

Zur Untersuchung der Lungenventilation wird ein gasförmiges Radiopharmakon, wie beispielsweise Technegas, verwendet. Bei Technegas handelt es sich um ein Aerosol aus Tc-99m markierten Kohlenstoff-Mikropartikeln. Das Aerosol wird hergestellt, indem Natriumpertechnetat auf einem Graphit-Tiegel in Gegenwart von ultrareinem Argon auf 2550°C erwärmt wird. Dieses atmet der Patient anschließend ein und die Ventilation kann mittels SPECT dargestellt werden.

Zur Untersuchung der Lungenperfusion wird mit Tc-99m markiertes makroaggregiertes Albumin (MAA) intravenös appliziert. Bei MAA handelt es sich um ein globuläres Protein mit einem Durchmesser von < 150 µm. Das MAA führt zu einem temporären Verschluss der Lungenkapillaren, sodass die Lungenperfusion durch eine SPECT sichtbar gemacht werden kann.

Indiziert ist die Untersuchung beispielsweise zur Vorhersage einer postoperativen Lungenfunktion (beispielsweise bei bevorstehender Teilresektion) oder zum Ausschluss einer akuten Lungenarterienembolie (LAE). Zur Abklärung einer LAE werden die Bilder der Lungenventilation mit denen der Lungenperfusion verglichen. Ist ein Perfusionsausfall sichtbar, der sich noch nicht in der Ventilation abzeichnet, ist dies ein Indiz für eine akute Lungenarterienembolie (siehe nachstehendes Beispiel).

lae lungenventilation
Missmatch-Befund bei LAE. Perfusion links, Ventilation rechts.

Nierenszintigraphie

Bei der Nierenszintigraphie erfolgt eine intravenöse Injektion von Tc-99m-Mercaptoacetyltriglycin (MAG3). Bei der anschließenden dynamischen Szintigraphie wird über mehrere Minuten der zeitliche Verlauf der Countrate über den Nieren quantitativ erfasst (siehe Film rechts). Zusätzlich kann die Nieren-Clearance durch Aktivitätsbestimmung von Blutproben, die zu zwei verschiedenen Zeitpunkten (beispielsweise 20 min und 40 min nach Applikation) entnommen wurden, bestimmt werden.

Ziel ist die quantitative Untersuchung der Nierenfunktion bei verschiedenen Nierenerkrankungen und Traumata.

Das nebenstehende Video zeigt den Verlauf des Radiopharmakons im Zeitraffer. Nach der linksseitigen Applikation erfolgt eine langsame Anreicherung der Nieren gefolgt von der Ausscheidung über die Blase. Die Aufnahmedauer betrug 40 Minuten.

Sentinel-Lymphknoten (SLN)-Szintigraphie

Die SLN-Szintigraphie dient der Auffindung von Wächterlymphknoten. Als Wächterlymphknoten werden die Lymphknoten bezeichnet, die in der Versorgungskette einer Tumorregion an erster Stelle stehen. Gelingt es den oder die Wächterlymphknoten gezielt zu entfernen und auf einen Tumorbefall zu untersuchen, kann bei einem negativen Befund die sonst übliche totale Lymphadenektomie der Region und die damit verbundenen Nebenwirkungen umgangen werden.

Zur Identifikation der Wächterlymphknoten werden mit Tc-99m markierte Kolloide (Teilchengröße ca. 20 – 100 nm) in die Tumorregion injiziert. Anschließend erfolgt eine dynamische Szintigraphie über mehrere Minuten und gegebenenfalls eine SPECT-CT einige Stunden nach Injektion. Die sich darstellenden Lymphknoten (in der Abbildung rechts zwei in der Leistenregion) werden auf der Haut markiert. An dieser Stelle beginnt der Chirurg mit dem Eingriff und sondiert mit einer mobilen Gammasonde die Region intraoperativ, sodass er den oder die anreichernden Lymphknoten gezielt entfernen kann. Ergibt sich in der Pathologie ein negativer Befund erübrigt sich die Resektion weiterer Lymphknoten.

Typische Indikationen sind Melanome, Mamma-Ca, Vulva-Ca, Prostata-Ca sowie HNO-Tumore.

SLN SPECT-CT drei Stunden nach Injektion
SLN SPECT-CT 3 Stunden nach Injektion. Es stellen sich zwei SLN in der Leistenregion dar

Skelettszintigraphie

Bei der Skelettszintigraphie werden mit Tc-99m markierte Phosphonate und Phosphate zur Untersuchung des Knochenstoffwechsels appliziert. Verfügbare Pharmaka sind Methylendiphosphonat (MDP), Pyrophosphat (PYP), Diphosphono-Propandicarbonsäure (DPD) und Oxydronat/Hydroxyethylendiphosphonat (HDP). Die Aufnahme erfolgt in zwei Phasen: Die erste Phase ist die Blutpoolphase und sollte circa zwei bis zehn Minuten nach Applikation aufgezeichnet werden. Hier stellen sich in erster Linie die Weichteile dar. Zwei bis fünf Stunden nach Applikation ist die Knochenanreicherung abgeschlossen und es erfolgt die Spätphase zur Darstellung der Knochen.

Typische Indikationen sind die Abklärung entzündlicher Knochen- und Weichteilveränderungen (benigne) und das Tumor-Staging (maligne).

skelettszintigraphie
Früh- und Spätaufnahme bei der Skelettszintigraphie. Darstellung der Weichteile links (6 Minuten nach Applikation) und der Knochen rechts (3 Stunden nach Applikation).

Hirnperfusion (DaTSCAN)

Mithilfe eines mit I-123 markierten Kokain-Analogons (DaTSCAN) und anschließender dynamischer Szintigraphie erfolgt eine quantitative Darstellung der Hirnperfusion. Dies ermöglicht die Differenzierung von neuro-degenerativen und nicht-neurodegenerativen Parkinson- und Tremor-Syndromen.

datscan
DaTSCAN bei beginnendem linksseitigem Parkinson. SPECT zeigt eine leicht verminder-te Anreicherung linksseitig.

Schilddrüsenszintigraphie

Bei der Schilddrüsenszintigraphie handelt es sich um eine quantitative Darstellung der Schilddrüsenaktivität. Dazu wird entweder Tc-99m-Pertechnetat oder I-123-Natriumiodid intravenös verabreicht, wobei ersteres aufgrund der kurzen Untersuchungszeit und der geringeren Kosten weitaus geläufiger ist. Wenn es um gesonderte Fragestellungen, wie der Erkennbarkeit von retrosternalem Schilddrüsengewebe geht, ist I-123-Natriumiodid jedoch eindeutig vorzuziehen. Das Tc-99m-Pertechnetat reichert nach intravenöser Applikation rasch im Schilddrüsengewebe an, verlässt es aber wegen fehlender Organifizierung ebenso schnell wieder. Aus diesem Grund ergibt sich für die Aufnahme mit Tc-99m-Pertechnetat ein relativ enges Zeitfenster von 5 bis 25 Minuten nach Injektion

Typische Indikationen sind die Darstellung der Schilddrüsenaktivität bei Herdbefunden, Verdacht auf Autonomien und/oder Überfunktionen sowie die Therapiekontrolle.

Diagnostische Referenzwerte

Im Gegensatz zur Röntgendiagnostik sind es in der Nuklearmedizin weniger die Geräteeinstellungen, die für die Bildqualität entscheidend sind, sondern vielmehr die applizierte Aktivität.

Welche Aktivität benötigt wird, um diagnostisch aussagekräftige Bilder zu erhalten ist von vielen Faktoren abhängig, wie der angestrebten Fragestellung, dem verwendeten Radiopharmakon, der Detektoreffizienz, der angestrebten Aufnahmezeit uvm. Grundsätzlich ist es in der Nuklearmedizin immer möglich die Bildstatistik durch längere Aufnahmezeiten zu verbessern, sofern sich die Zählrate über der Untersuchungsregion ausreichend vom umliegenden Gewebe abhebt.

Zur deutschlandweiten Standardisierung der Applikationsaktivitäten und der damit verbundenen Strahlenexposition der Patienten veröffentlicht das Bundesamt für Strahlenschutz (BfS) diagnostische Referenzwerte (DRW), die in regelmäßigen Abständen aktualisiert werden. Die DRW geben sowohl die zu applizierende Aktivität für häufig verwendete Radiopharmaka, als auch Werte für den CTDIvol bei Hybriduntersuchungen vor. Die Vorgaben basieren auf dem 75. Perzentil einer deutschlandweiten Erhebung verschiedener Anwender und sind dementsprechend nicht als Optimalwerte zu interpretieren. Abweichungen nach oben können notwendig und Abweichungen nach unten sinnvoll sein. Beides muss begründet werden. Ein gutes Beispiel für eine begründete Unterschreitung des DRW ist die Publikation Individual calculation of perfusion activity based on ventilation efficiency for V/P-SPECT. Hier wurde gezeigt, dass bei der Lungenszintigraphie zur Abklärung einer LAE die individuelle Berechnung der Applikationsaktivität sowohl zu einer leitlinienkonformen Bildqualität führt als auch dosissparend sein kann.

Verwendete Nuklide

In der folgenden Tabelle werden einige, in der Diagnostik eingesetzte, Nuklide und deren Eigenschaften aufgeführt. Die Liste ist nicht abschließend und wird weiter ergänzt:

Nuklid Zerfallsart Halbwertszeit Bildgebung Verw. γ-Energie
Tc-99m
IT*
6 h
Szintigraphie + SPECT
140 keV
I-123
EC** + β+
13,2 h
Szintigraphie + SPECT
159 keV
In-111
EC**
2,8 d
Szintigraphie + SPECT
171 keV + 245 keV
Tl-201
EC**
3,04 d
Szintigraphie + SPECT
167 keV
Ga-68
EC**+ β+
67,7 min
PET
511 keV
F-18
EC**+ β+
109,8 min
PET
511 keV
O-15
EC**+ β+
122,1 s
PET
511 keV
C-11
EC**+ β+
20,4 min
PET
511 keV

Nuklearmedizin

Inhaltsverzeichnis Vorwort Die Nuklearmedizin ist der Bereich, in dem Kernphysik auf Medizin trifft. Hier werden dem Patienten γ-, β- oder sogar α-Strahler appliziert. Welcher Strahler

Weiterlesen »

SLN-Szintigraphie

Inhaltsverzeichnis SLN-Szintigraphie Bei der SLN-Szintigraphie handelt es sich um ein bildgebenes Verfahren zur Darstellung der Wächterlymphknoten (engl. „sentinel lymph nodes“). Als Wächterlymphknoten wird der erste

Weiterlesen »
Scroll to Top
Zum Medizinphysik-Newsletter anmelden

Keine Infos rund um das Thema Medizinphysik mehr verpassen!
Erhalte Informationen zu rechtlichen Änderungen, relevanten DIN-Normen & neuen Artikeln auf unserer Seite. Melde Dich an und bleibe mit unserem Newsletter immer auf dem aktuellen Stand.